30V, 1A Single Cell Li-lon & Li-Pol Linear Battery Charger And 20V P-Channel Power MOSFET

General Description

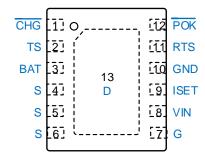
The DS6502 series of devices are highly integrated Lilon and Li-Pol linear chargers devices targeted at space-limited portable applications.

The battery is charged in three phases: conditioning, constant current and constant voltage. In all charge phases, an internal control loop monitors the IC junction temperature and reduces the charge current if an internal temperature threshold is exceeded.

The charger power stage and charge current sense functions are fully integrated. The charger function has high accuracy current and voltage regulation loops, charge status display, and charge termination.

The fast charge current value is also programmable via an external resistor.

Features

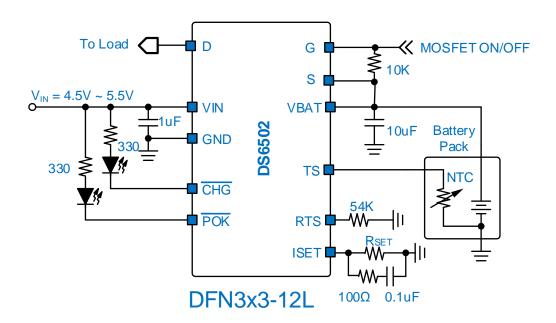

- 30V Input Rating; with 7.36V Input Overvoltage Protection
- 1% Charge Voltage Accuracy
- Programmable Charger Current 50mA to 1A
- 125°C Thermal Regulation
- Fixed ISET / 5 for Termination of Charge Current
- Fixed ISET / 3 for Pre-Charge Current
- Operation over JEITA Range via Battery NTC 1/2
 Fast-Charge-Current at Cold, 4.05V at Hot
- Adjustable Temperature Sense Current
- Very Low Battery leakage Current 0.1uA
- Prevent Battery Reverse Connection Function
- Built-In P-Channel Power MOSFET
- DFN3x3-12L Package Available

Applications

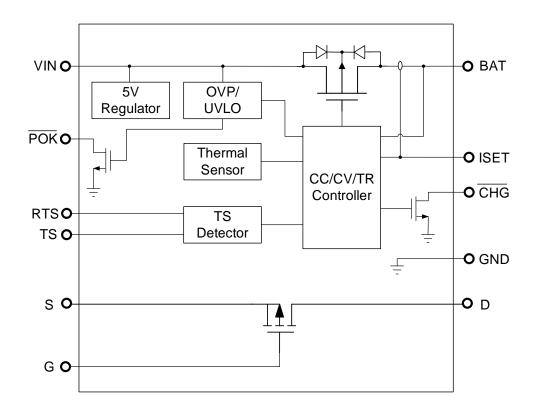
- Laptop, Palmtops and PDAs
- Smart Phones
- MP3 Players
- Low-Power Handheld Devices
- E-Cig

Pin Configurations

DFN3x3-12L


Designator	Description	Symbol	Description
V	V	Α	4.2V
^	VBAT	В	4.35V
YY	Package type	D12	DFN3x3-12L

Example: V_{BAT}=4.2V, DFN-3X3-12L. Part no = DS6502AD12


Description of Functional Pins

Pin No	Pin Name	Pin Function		
DFN-3X3	Fill Naille	T III T UNCTON		
1	CHG	Low (FET on) indicates charging and Open Drain (FET off) indicates no Charging or Charge complete.		
2	TS	Temperature sense terminal connected to 10k & 100k at 25°C NTC thermistor, in the battery pack. Floating TS terminal or pulling High disables TS monitoring. Pulling terminal Low disables the IC. Let the RTS pin floating if there is no TS requirement.		
3	BAT	Battery Connection. System Load may be connected. Expected range of bypass capacitors 10uF to 22uF.		
4,5,6	S	Power MOSFET Source Pin .		
7	G	Power MOSFET Gate Pin .		
8	VIN	Input of Supply Voltage .		
9	ISET	Programs the Fast-charge current setting. External resistor from ISET to VSS defines fast charge current value. Range is 3.74K Ω (300mA) to 530 Ω (1000mA) .		
10	GND	Ground .		
11	RTS	Programs the Temperature Sense (TS) current setting. External resistor from RTS to VSS defines the output current of TS pin. Let the RTS pin floating if there is no TS requirement.		
12	POK	Low (FET on) indicates the input voltage is above UVLO and the OUT (battery) voltage , and less than OVP threshold voltage.		
13 (Exposed Pad)	D	Power MOSFET Drain Pin .		

DSTECHTypical Application Circuits

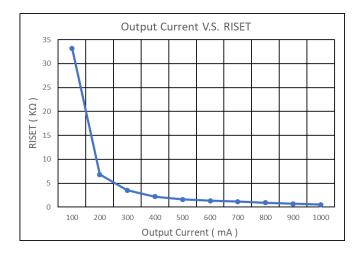
Function Block Diagram

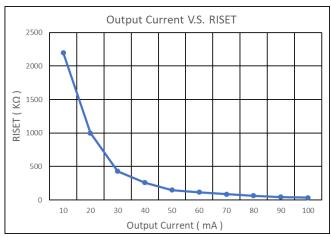
DSTECH Preliminary Absolute Maximum Ratings (Note 1)

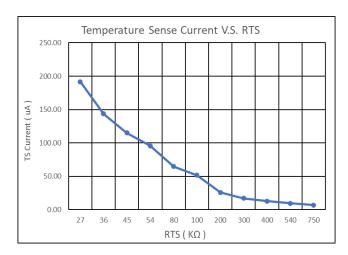
VIN to GND0.3V to 30V
BAT to GND0.3V to 12V
D to S 0V to -20V
G to S
Other to GND0.3V to 6V
Package Thermal Resistance (Note 2)
DFN3x3-12L, θ_{JA} 70 °C /W
Lead Temperature (Soldering, 10 sec.) 260 °C
Junction Temperature 150 °C
Storage Temperature Range
ESD Susceptibility
HBM 2KV
MM 200V

Recommended Operating Conditions

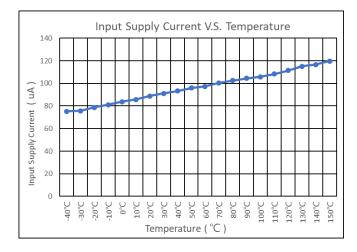
Input Voltage VIN	4.5V to 30V
Junction Temperature Range	-40 °C to 125 °C
Ambient Temperature Range	-40 °C to 85 °C

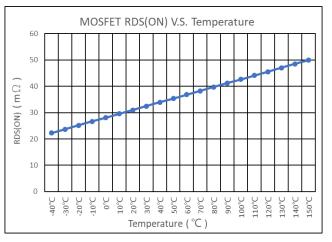

(V_{IN} =5V, T_A=25°C unless otherwise specified)


Parameter	Symbol	Test Conditions	Min	Тур	Max	Unit
Supply Voltage	Vin		4.6		24	V
UVLO Threshold Voltage	V _{IN_UVLO}	V _{IN} Falling		4.5		V
UVLO Hysteresis Voltage	Vuvlo_Hys			100		mV
Input Over-Voltage Protection	V_{OVP}			7.36		V
Input Over-Voltage Protection Hysteresis	V _{OVP_HYS}			0.1		V
Input Supply Current (Charge mode)	IQA	TS = open, V IN = 5V,no load on OUT terminal,		95		μA
Input Standby Current	las	TS = 0V, V IN = 5V		85		μΑ
Battery leakage current into BAT terminal	Іват	V _{IN} = 0V, V _{BAT} = 4.2V		0.1		μΑ
Reverse Battery Current into BAT terminal	I _{RBAT}	V _{BAT} = -4.2V		800		μA
Battery Regulation Voltage	V _{BAT} / Type A	I _{OUT} = 25mA	4.16	4.2	4.24	V
Dattery Regulation Voltage	V _{BAT} / Type B	1001 = 25111A	4.31	4.35	4.39	V
Output Current	Іоит	$R_{ISET} = 530 \text{ to } 124K\Omega$	50		1000	mA
Pre-charge to fast-charge transition threshold	V _{LOWV}	V _{BAT} Falling	1	2.81		V
Temperature Sense Current	I _{TS}	$R_{RTS} = 54k\Omega$		100		μΑ
Low temperature CHG Pending	V _{TS} -0°C	TS Rising	ŀ	2.53		V
Hysteresis at 0°C	V _{HYS} -0°C			60		mV
Low temperature, half charge	V _{TS} -10°C	TS Rising	1	1.71		V
Hysteresis at 10°C	V _{HYS} -10°C		-	60		mV
High temperature at 4.1V	V _{TS} -45°C	TS Falling	1	0.45		V
Hysteresis at 45°C	V _{HYS} -45°C		1	17		mV
High temperature Disable	V _{TS} -60°C	TS Falling	-	0.28		mV
Hysteresis at 60°C	V _{HYS} -60°C			17		mV
Charge Shutdown Threshold	V _{TS_SD}	TS Falling		110		mV
Hysteresis of TS Shutdown	VTS_SD-HYS			17		mV
Temperature regulation limit	T _J (REG)			125		°C
Thermal shutdown temperature	T_{J_OFF}			155		°C
Drain to Source Breakdown Voltage	BVDSS	Vgs=0V , In=-250uA	-20			V
Static Drain-Source On-Resistance	RDS(ON)	Vgs=-4.5V , Ip=-4A	-	30		$\mathbf{m}\Omega$
Gate Threshold Voltage	V _{GS(th)}	Vgs=Vps , Ip=-250uA	-0.3		-1.0	V


Note 1. Stresses beyond those listed "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions may affect device reliability.

Note 2. θ_{JA} is measured at T_A = 25°C on a DSTECH EVB board.


Typical Characteristics



Application Guideline

Power-Down or Undervoltage Lockout (UVLO)

The DS6502 is in power down mode if the VIN terminal voltage is less than UVLO. The part is considered "dead" and all the terminals are high impedance. Once the VIN voltage rises above the UVLO threshold the IC will enter Active mode.

Power-up

The IC is alive after the VIN voltage ramps above UVLO, resets all logic, and starts to perform many of the continuous monitoring routines. Typically, the input voltage quickly rises through the UVLO and declares power good.

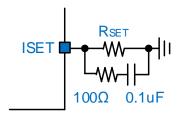
Overvoltage-Protection (OVP)

If the input source applies an overvoltage, the pass FET, if previously on, turns off after a deglitch (OVP). The CHG and POK terminal goes to a high impedance state. Once the overvoltage returns to a normal voltage, the POK terminal goes low, charge continues and the CHG terminal goes low after a deglitch period.

Program the Temperature Sense Current, RTS

From the Electrical Characteristics table:

RTS (KΩ)	for Battery NTC
54	10K
540	100K


Selecting the closest standard value, use a resistor between RTS and GND.

Program the Fast Charge Current, ISET

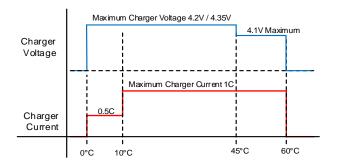
From the Electrical Characteristics table:

Charge Current (mA)
1000
900
800
700
600
500
400
300
200
100
50

Selecting the closest standard value, use a R_{SET} resistor between ISET and GND.

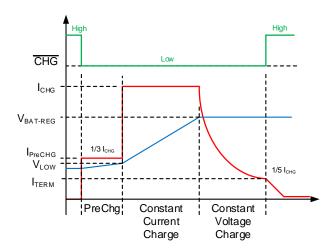
It is recommended to connect a set of RC (100Ω & 0.1uF) in parallel with the RSET resistor, which can make the charging current more stable.

CHG and POK LED Pull-up Source


For host monitoring, a pull-up resistor is used between the "STATUS" terminal and the VCC of the host and for a visual indication a resistor in series with an LED is connected between the "STATUS" terminal and a power source. If the CHG or POK source is capable of exceeding 7V, a 6.2V Zener diode should be used to clamp the voltage. If the source is the BAT terminal, note that as the battery changes voltage, and the brightness of the LEDs vary.

Charging State	CHG FET/LED
1st Charge after VIN applied	ON
OVP or UVLO	OFF

VIN Power Good State	POK FET/LED	
UVLO	OFF	
OVP Mode	OFF	
Normal Input (UVLO < VIN < V _{OVP})	ON	
POK is independent of chip disable		


Temperature Sense (TS)

The TS function for the DS6502 is designed to follow the new JEITA temperature standard for Li-lon and Li-Pol batteries. There are now four thresholds, 60°C, 45°C, 10°C, and 0°C. Normal operation occurs between 10°C and 45°C. If between 0°C and 10°C the charge current level is cut in half and if between 45°C and 60°C the regulation voltage is reduced to 4.1Vmax.

The TS feature is implemented using an internal by RTS set current source to bias the thermistor (designed for use with a 10K NTC β = 4050) connected from the TS terminal to VSS. If this feature is not needed, a fixed $10K\Omega$ can be placed between TS and VSS to allow normal operation. This may be done if the host is monitoring the thermistor and then the host would determine when to pull the TS terminal low to disable charge.

Charge Cycle

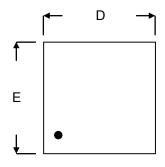
Thermal Application

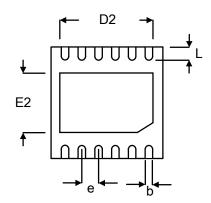
For continuous operation, do not exceed the absolute maximum junction temperature. The maximum power dissipation depends on the thermal resistance of the IC package, PCB layout, rate of surrounding airflow, and difference between junction and ambient temperature. The maximum power dissipation can be calculated as below:

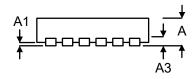
T_A=25°C, DSTECH PCB,

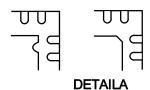
The max PD(Max) = $(125^{\circ}C - 25^{\circ}C)/(70^{\circ}C/W) = 1.43W$ for DFN-12L 3x3 packages.

Power dissipation (PD) is equal to the product of the output current and the voltage drop across the output pass element, as shown in the equation below:


$$PD = (VIN - VOUT) \times IOUT$$


8


Layout Consideration


By placing input and output capacitors on the same side of the PCB as the Charger, and placing them as close as is practical to the package can achieve the best performance. The ground connections for input and output capacitors must be back to the DS6502 ground pin using as wide and as short of a copper trace as is practical. Connections using long trace lengths, narrow trace widths, and/or connections through via must be avoided. These add parasitic inductances and resistance that results in worse performance especially during transient conditions.

Package Information:

PIN #1 ID and Tie Bar Mark Options

Note: The configuration of the Pin #1 identifier is optional, but must be located within the zone indicated.

Symbol	Millimeters		Inches	
	Min.	Max.	Min.	Max.
Α	0.700	0.800	0.028	0.031
A1	0.000	0.050	0.000	0.002
A3	0.175	0.250	0.007	0.010
b	0.150	0.250	0.006	0.010
D	2.900	3.100	0.114	0.122
D1	0.260	0.360	0.010	0.014
D2	2.500		0.098	
Е	2.900	3.100	0.114	0.122
E2	1.550		0.061	
е	0.450		0.018	
L	0.300	0.500	0.012	0.020

DFN3x3-12L